- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chaiser, Rachel (1)
-
Coates-Welsh, Maeve (1)
-
Deeley, Robin J (1)
-
Deeley, Robin J. (1)
-
Farhner, Annika (1)
-
Giornozi, Jamal (1)
-
Huq, Robi (1)
-
Lorenzo, Levi (1)
-
Oyola-Cortes, Jose (1)
-
Reardon, Maggie (1)
-
Stocker, Andrew (1)
-
Stocker, Andrew M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Building on work of Ruelle and Putnam in the Smale space case, Thomsen defined the homoclinic and heteroclinic -algebras for an expansive dynamical system. In this paper we define a class of expansive dynamical systems, called synchronizing dynamical systems, that exhibit hyperbolic behavior almost everywhere. Synchronizing dynamical systems generalize Smale spaces (and even finitely presented systems). Yet they still have desirable dynamical properties such as having a dense set of periodic points. We study various -algebras associated with a synchronizing dynamical system. Among other results, we show that the homoclinic algebra of a synchronizing system contains an ideal which behaves like the homoclinic algebra of a Smale space.more » « less
-
Chaiser, Rachel; Coates-Welsh, Maeve; Deeley, Robin J.; Farhner, Annika; Giornozi, Jamal; Huq, Robi; Lorenzo, Levi; Oyola-Cortes, Jose; Reardon, Maggie; Stocker, Andrew M. (, Münster journal of mathematics)
An official website of the United States government

Full Text Available